Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biology, Cultivation and Applications of Mushrooms ; : 3-25, 2022.
Article in English | Scopus | ID: covidwho-2299487

ABSTRACT

Macrofungi are diverse in their uses as good source of protein in our diet, nutraceuticals, cosmeceuticals medicine, and for making beautiful art pieces. Several species serve as decomposers and many form mycorrhizal associations with plants. The commercial cultivation of several macrofungi has been steadily increasing globally. Cultivation of Cordyceps militaris can be done in a variety of media including silkworm pupae, rice, or liquid nutrition. Macrofungi are diverse with complex and highly varied growth conditions and bioactive constituents, most macro-fungal resources have not yet been fully explored and implicated, leading to an urgent need for appropriate strategies to address the problem. Increasing attention has been paid to the cultivation and application, of these fungi as potential probiotics. The accumulated secondary metabolites in medicinal mushrooms have been widely accepted as sources of safe and effective nutraceuticals, cosmeceuticals, and pharmaceuticals. Various mushrooms are utilized as foods appreciated for their exquisite flavour and are used extensively for their medicinal properties. Recently, we saw how an invisibly small entity an ultramicroscopic virus created a turmoil in dynamic ecosystem of the planet Earth and caused the human societies to grind to a halt. Of course, human lives have pivoted around the metabolic ingenuity of fungi for a long time and these organisms can still be the tools to learn the intricacies of life, their mutualistic behaviour with other organisms and potential to produce a large number of secondary metabolites useful to fight diseases and providing good memory and better health are our present day concerns. Entangled body of tubes can teach the lessons of human survival in this crucial time of Corona pandemic. These macrofungi could modulate immune cell's response and possess antimicrobial, antioxidants, and anticancer properties. In Western Ghats as well as Himalayan mountain ranges of India, the lush green vegetation supports a variety of naturally occurring macrofungi. Brief details of some of the well-known fungi found in India, Macedonia, and other parts of the world are highlighted in this chapter. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022.

2.
Nutrients ; 13(11)2021 Nov 06.
Article in English | MEDLINE | ID: covidwho-1502477

ABSTRACT

Beta-glucans comprise a group of polysaccharides of natural origin found in bacteria, algae, and plants, e.g., cereal seeds, as well as microfungi and macrofungi (mushrooms), which are characterized by diverse structures and functions. They are known for their metabolic and immunomodulatory properties, including anticancer, antibacterial, and antiviral. Recent reports suggest a potential of beta-glucans in the prevention and treatment of COVID-19. In contrast to ß-glucans from other sources, ß-glucans from mushrooms are characterized by ß-1,3-glucans with short ß-1,6-side chains. This structure is recognized by receptors located on the surface of immune cells; thus, mushroom ß-glucans have specific immunomodulatory properties and gained BRM (biological response modifier) status. Moreover, mushroom beta-glucans also owe their properties to the formation of triple helix conformation, which is one of the key factors influencing the bioactivity of mushroom beta-glucans. This review summarizes the latest findings on biological and health-promoting potential of mushroom beta-glucans for the treatment of civilization and viral diseases, with particular emphasis on COVID-19.


Subject(s)
Agaricales/metabolism , COVID-19 Drug Treatment , Diet, Healthy , Immunologic Factors/administration & dosage , beta-Glucans/administration & dosage , Animals , COVID-19/immunology , COVID-19/virology , Carbohydrate Conformation , Humans , Immunologic Factors/immunology , Nutritive Value , Structure-Activity Relationship , beta-Glucans/immunology , beta-Glucans/metabolism
3.
Int J Biol Macromol ; 179: 239-258, 2021 May 15.
Article in English | MEDLINE | ID: covidwho-1115898

ABSTRACT

For thousands of years, fungi have been a valuable and promising source of therapeutic agents for treatment of various diseases. Mushroom is a macrofungus which has been cultivated worldwide for its nutritional value and medicinal applications. Several bioactive molecules were extracted from mushroom such as polysaccharides, lectins and terpenoids. Lectins are carbohydrate-binding proteins with non-immunologic origin. Lectins were classified according to their structure, origin and sugar specificity. This protein has different binding specificity with surface glycan moiety which determines its activity and therapeutic applications. A wide range of medicinal activities such as antitumor, antiviral, antimicrobial, immunomodulatory and antidiabetic were reported from sugar-binding proteins. However, glycan-binding protein from mushroom is not well explored as antiviral agent. The discovery of novel antiviral agents is a public health emergency to overcome the current pandemic and be ready for the upcoming viral pandemics. The mechanism of action of lectin against viruses targets numerous steps in viral life cycle such as viral attachment, entry and replication. This review described the history, classification, purification techniques, structure-function relationship and different therapeutic applications of mushroom lectin. In addition, we focus on the antiviral activity, purification and physicochemical characteristics of some mushroom lectins.


Subject(s)
Agaricales/chemistry , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Hypoglycemic Agents/pharmacology , Lectins , Lectins/classification , Lectins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL